Code: EC3T2

II B.Tech - I Semester - Regular/Supplementary Examinations November - 2018

PROBABILITY THEORY AND STOCHASTIC PROCESS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) State joint probability.
b) Define total probability.
c) Discuss about first and second moments of a random variable.
d) Discuss the probability distribution function with properties.
e) Define Normal distribution function and explain with relevant plots.
f) Given the function:
$f_{X Y}(x, y)=b(x+y)^{2} \quad-2<x<2$, and $-3<y<3$
0 elsewhere
Evaluate the constant b if it is a valid density function.
g) State Central Limit theorem.
h) Define mean and mean square of a random variable.
i) Discuss about the two dimensional Gaussian random variables density function.
j) Mention the properties of power spectral density.
k) Define the Response of the LTI system
PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Discuss about Bay's theorem with detailed explanation.
b) State about independent events with an example. 4 M
c) David is writing an exam of multiple choice questions. It contains a total of 15 questions, each of which has 4 possible answers. What is the probability that David gets exactly 11 correct answers?
3. a) Sketch the Distribution and density function and also mention the applications of Uniform Distribution. 6 M
b) A random variable X has a probability density

$$
f_{X}(x)= \begin{cases}\frac{\pi}{16} \cos \left(\frac{\pi x}{8}\right), & -4<x<4 \\ 0, & \text { elsewhere }\end{cases}
$$

Find
i) Mean value
ii) Second moment
iii) Variance.
c) Apply the concept of the moments of the random variable, determine the mean and variance of Poisson distribution \& prove that it equals to average rate of outcome λ.

4 M
4. a) Write the equation for Joint density function and prove its properties.

4 M
b) Two Random Variables X and Y have a joint probability density function

6 M

$$
f_{X Y}(x, y)=\left\{\begin{array}{cc}
\frac{5}{16} x^{2} y & 0<y<x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

i) Find the Marginal density function of X and Y .
ii) Are X and Y statistically independent.
c) Discuss about statistical independence of random variables.
5. a) Discuss the Wiener-Khintchine relation for auto power spectral density and autocorrelation of a random process.
b) If $\mathrm{X}(\mathrm{t})$ is WSS process, Develop the power spectrum of $Y(t)=A_{0}+B_{0} X(t)$ in terms of the power spectrum of $\mathrm{X}(\mathrm{t})$, if $\mathrm{A}_{0}, \mathrm{~B}_{0}$ are real constants.
c) Define and explain stationarity of a random process $\mathrm{X}(\mathrm{t})$ and its types.
6. a) Derive the relationship between PSDs of input and output random processes of an LTI system. 4 M
b) A Random Noise $X(t)$ having power spectrum $S_{x x}(\omega)=\frac{3}{49+\omega^{2}}$ is applied to a network for which $h(t)=u(t) t^{2} \exp (-7 t)$. The network response is denoted by $\mathrm{Y}(\mathrm{t})$. 8 M
i) Compute the average power in $\mathrm{X}(\mathrm{t})$
ii) Evaluate the power spectrum of $\mathrm{Y}(\mathrm{t})$
iii) Find the average power in $\mathrm{Y}(\mathrm{t})$
c) Deduce the expression for auto correlation function of system response.

